
Mindset in Writing

New Mexico

Supercomputing Challenge

Final Report

April 7, 2021

Team 19

La Cueva High School

Team Members:

Edward Potapov

Joel Gates

Teachers:

Ms. Yolanda Lozano

Project Mentor:

Dennis Trujillo

Executive Summary:

Our project uses natural language processing to analyze large groups of texts for the

sentiment. When given a large sample of texts, a prediction of general sentiment is helpful in

predicting the popular opinion of a prompt. Using the Python programming languages and the

spaCy library, we were able to train a neural network by interfacing the spaCy library to learn

from a sample of many polarized reviews from the Stanford Very Large Movie Review Dataset

used to train natural language processing AI’s for similar tasks. We then evaluated the predicted

(by the AI) score of responses collected from a poll to evaluate the effectiveness of the neural

network. We would then go through the data ourselves and evaluate them based on their

sentiment. Our goal was to check how effective the model was, checking responses based on

how we would evaluate them. We would also nullify repeat answers, answers that didn’t have an

opinion, and random strings that were imputed. After training our model with 20 thousand

polarized reviews, we would test the responses obtained from the poll. We were working with

CSV files and Pandas to easily check and add new data to a CSV that we would generate. After

we personally evaluate the data, we would run our model on it and check how many were correct

on the basis of our evaluations.

Project Statement:

For college and class essays, as well as reflections on specific topics, reading and

interpreting essays can be time-consuming. We were wondering if there was an easy and

effective way to get the tone or sentiment to an answer to a question. This could be used to gauge

a class's opinion on a certain subject without wasting a minute of the teacher’s time.

Description:

We used an NLP (Natural Language Processing) Library, spaCy, that specializes in

production-ready products and is good at evaluating large sets of samples. Since the quality of

written text can vary, the use of a neural network is necessary. Our code would read in all the

data that we obtained from the Movie Dataset and divide it up into a training and testing dataset.

We would divide it up with the ratio of 4/1, so roughly 80% of the specified data was used for

training while the rest or 20% was used for testing. The list of entries would also have a label

that categorized it as either positive or negative. Right before we divided up the data, it was

important to set the seed to 0 because the results were worse without it.

In the spaCy library, we would set up our pipes or classifiers as the text categorizer while

removing all other pipes and adding positive and negative as the labels used. As we updated the

model with the data, we would also test it by checking for true positives, false positives, true

negatives, and false negatives to display the precision, recall, and f-score. These are used in

addition to the loss to tell us how well the model is performing with the data as it goes through

the training. After it is done training, it generates the model artifact file that we would reuse to

evaluate different pieces of writing.

The neural network that we used for the project was CNN (Convolutional Neural

Network) which is a commonly used neural network for natural language processing. The neural

network was implemented in the spaCy library, so we did not have to build a neural network

from the ground up to process the data.

The responses were responses collected from a Google Form which asked two questions.

One was “What is your opinion on expanding federally implemented universal health care?”, this

question was intended to be the more complicated question that would elicit a more nuanced

response. The other was “What are your thoughts on pineapple on pizza?” which is a very simple

yes or no question, do they like it or do they not, that the writer could express in any way, shape

or form. The responses were sourced with the help of our computer science teacher Mrs. Yolanda

Lozano, who was nice enough to send our form around to both her students and other staff

members in La Cueva High School to respond to.

Then we would take the responses in the form of a CSV file and use Pandas to evaluate

them right in a duplicate of the file. We first would have to evaluate the writing ourselves and

then let the model evaluate it. We personally would add two columns with our opinions and then

let the script add two columns that would be the results of the model. The program would go

through each entry and analyze them and evaluate them, and put that information into the results

column. Pandas were really helpful because we could specify how it would read in the CSV file

and how it would spit it out. At the end of the process, we would have a test output with our own

evaluations on it.

Verifying Model:

To verify the capabilities of our model, we, as previously said, evaluated the responses

ourselves. To be more specific, we looked at the responses to see if they were positive or

negative and specifically addressing situations where they were displayed as such. With the

Google Form, we got a lot of repeated entries and responses that weren’t direct answers to the

question. Answers that were neutral were thrown out because we wanted to test in accordance

with an actual class or college essay where you would have to state your claim on a subject. We

also had to get rid of some answers because they were random strings of numbers that didn’t

occur often. So to address those responses, we put N/A in our evaluation columns for the

affected responses.

To score our model, we went through each response and compared it to our evaluations.

Results that were in accordance with our Evaluations would get one point out of the number of

responses, and N/A evaluations would decrease the number the score was out of—not giving it a

point and decreasing the number of testable responses to make sure that we had the model

analyzing the ones we wanted to be analyzed. The program would then give us a score of the

different questions.

Results:

Examples of CSV Data, 3 out of 121 entries:

Health Care
Question

Pineapple on
pizza
Question

Q1
Evaluation

Q2
Evaluation

Q1 Model
Result

Q2 Model
result

I am in favor
for expanding
universal
healthcare.

I throughly
enjoy
pineapple
pizza

Positive Positive Negative Positive

I approve Disgusting Positive Negative Positive Negative

I support
federally
implemented
universal
health care,
people have a
right to be
able to
survive.

Pineapple is
good on
pizza.

Positive Positive Positive Positive

Results: Question 1: 63/108 Question 2: 73/99

These were the scores when comparing the results from the model to what we evaluated. We had

to get rid of repeated answers, answers that didn’t have an opinion, and random strings that were

imputed.

Beginning training

Loss Precision Recall F-score

Training iteration 0

14.880345505895093 0.8673726676708655 0.8431372548978278 0.8550832711864027

Training iteration 1

0.1805236021973542 0.8791374122323012 0.8593137254859838 0.8691125433769503

Training iteration 2

0.08358318791215424 0.8852130325770166 0.8656862745055605 0.8753407682732325

Training iteration 3

0.07044280704394623 0.8861629048042877 0.8852941176427191 0.8857282981810412

Training iteration 4

0.06364498856055434 0.8899355478389196 0.8799019607800005 0.8848903130348292

Training iteration 5

0.04973771890036005 0.8863748155391719 0.8833333333290033 0.884851460835331

Training iteration 6

0.045834960956426585 0.8846908734009584 0.8838235294074323 0.8842569887156241

Training iteration 7

0.03778043760019045 0.8871442590731741 0.8862745097995771 0.8867091711579858

Training iteration 8

0.03496804056737801 0.8837890624956847 0.8872549019564351 0.8855185909937109

Training iteration 9

0.030480689138187245 0.8889432485279406 0.8906862745054379 0.8898139079290411

Training iteration 10

0.02922336872438791 0.8870029097920127 0.8965686274465855 0.8917601170117417

Training iteration 11

0.02530517086256623 0.8881322957155247 0.8950980392112986 0.8916015624956465

Training iteration 12

0.023658611755603687 0.8854924793746459 0.8946078431328696 0.8900268227218239

Training iteration 13

0.022361659436530346 0.8849129593767655 0.8970588235250144 0.8909444985350977

Training iteration 14

0.02168842341245636 0.8844852585747488 0.8970588235250144 0.8907276709618364

Training iteration 15

0.019519418275321776 0.887159533069615 0.8941176470544406 0.8906249999956513

Training iteration 16

0.020349686088382057 0.8857696030934862 0.8970588235250144 0.8913784705265885

Training iteration 17

0.017983669600448948 0.8852300242087883 0.8960784313681566 0.8906211936619216

Training iteration 18

0.015234774563754439 0.8811594202855983 0.8941176470544406 0.8875912408715934

Training iteration 19

0.016584919919956143 0.8817567567525012 0.8955882352897275 0.8886186770384795

Training Time: 1 hours 58 minutes 48.5633 seconds

Predicted sentiment: Positive Score: 0.9531373977661133

Review test text:

This movie is the greatest movie I have ever seen. It was better than all the other movies which I

have seen.

Predicted sentiment: Positive Score: 0.9979650974273682

Review test text:

I really just thought this movie was bad. It was the worst movie I have ever seen!

Predicted sentiment: Negative Score: 0.9999545812606812

Review test text:

This move was okay. I didn't love it, but I also didn't hate it. Pretty mediocre.

Predicted sentiment: Negative Score: 0.9999545812606812

Results: Question 1: 63/108 Question 2: 73/99

Conclusions:

After analyzing our output, we came to several conclusions. First of all, our results were

decent with the limitations of the questions we asked. The first question, in particular, could go

multiple different ways. In a lot of different cases we saw when people tried to elaborate the pros

and cons of the subject, the model would guess the sentiment of which one the person focused

on, which could be the opposite from what the person was thinking. The second question pointed

out the shortcomings of our model, with some simple questions being deemed negative when

they actually weren’t. Overall the model proved to be more effective than evaluating them at

random but still worse than when a human evaluates them. On average, our model was true. The

shortcomings of the project could come in different forms. It could be the lack of data that we

could find for this specific task (It was relatively good at evaluating reviews) or our inability to

train with datasets that were several times larger. For the most part, it would struggle with the

more developed (in addition to the grammatically and spelling error filled) responses and would

breeze through the simple answers with, of course, a few hiccups along the way.

Looking back at the initial question of how effective this method is, shows that it is

definitely possible to do it with a pretty good efficacy rating, which means that getting a gist of

the class opinion is definitely possible, but it might be a little harder for scoring essays.

Advanced customizations to the neural network provided by spaCy would most likely aid in

language processing and could lead to more refined/developed results. Nonetheless, our model

could be a useful item in a teacher’s toolbox for quickly determining an estimate of how many

people were in favor of one choice (a type of assignment for example) without directly posing

the question or in an open ended response.

Achievements:

For both of us, learning more about neural networks and machine learning is an

achievement in itself. We are also proud of the fact that we could train a model that was

relatively effective in evaluating sentiment. We understand in a lot of different cases, it’s hard for

the computer to make sense of its surroundings and understand the difference between subtle

differences in written language that can even be hard for people to easily understand. With the

neural network that was provided by the library, we were able to achieve generally good results,

but in future projects we would like to learn more about neural networks. Nonetheless, the

effectiveness of the model was an accomplishment as we had no experience with neural

networks or natural language processing before beginning this project.

Recommendations:

Initially we had to narrow our research from plagiarism and mindset to just mindset

because plagiarism detectors are quite common and it isn’t worth it to reinvent the wheel.

Resources:

spaCy - The Natural Language Processing Tool that was used to train and use a language model.

Anaconda - The python data science kit that we used that had all the necessary tools for us.

VScode - Edward’s Preferred Text Editor

Spyder - Joel’s Preferred Text Editor

Real Python. (2020, November 26). Use Sentiment Analysis With Python to Classify Movie
Reviews. Retrieved December 10, 2020, from https://realpython.com/sentiment-analysis-python/

Grayson, Siobhán, et al. “Novel2Vec: Characterising 19th Century Fiction via Word
Embeddings.” Academia.edu, University College Dublin,
www.academia.edu/33141616/Novel2Vec_Characterising_19th_Century_Fiction_via_Word_Em
beddings.

Maas, A. (n.d.). Large movie review dataset. Retrieved April 11, 2021, fro
https://ai.stanford.edu/~amaas/data/sentiment/

Install spacy · spacy usage documentation. (n.d.). Retrieved April 11, 2021, from
https://spacy.io/usage

Acknowledgments:

In the beginning of the project, Dennis Trujillo advised us as to which direction we

should go with the project and provided us resources where we began our resources from. We

would also like to acknowledge and thank our computer science teacher, Ms. Lozano, for

encouraging her students to fill out our form so we could have many responses to analyse.

https://realpython.com/sentiment-analysis-python/
http://www.academia.edu/33141616/Novel2Vec_Characterising_19th_Century_Fiction_via_Word_Embeddings
http://www.academia.edu/33141616/Novel2Vec_Characterising_19th_Century_Fiction_via_Word_Embeddings
https://ai.stanford.edu/~amaas/data/sentiment/
https://spacy.io/usage

